ONLINE COURSE FAECAL SLUDGE MANAGEMENT DEVELOPED BY UNESCO-IHE AND SANDEC JANUARY 2016

#### Key note 2.1: CHARACTERISATION OF FSM (QUALITY, QUANTITY, SOPs)

Key note speaker Konstantina Velkushanova Research Fellow, Pollution Research Group, University of KwaZulu-Natal Velkushanova@ukzn.ac.za http://prg.ukzn.ac.za

Related course material Chapter 2 in the FSM book;

UNESCO-IHE INSTITUTE FOR WATER EDUCATION

www.fsm-e-learning.net







# **Variations in FS characteristics**

#### FS characteristics vary depending on different factors:

- Environmental geographical and demographic location, climate, underground water etc.
- Type of on-site sanitation technology (quality of construction)
- ✓ Age of the sludge; filling rates
- ✓ Toilet use
  - Number of users and their diet
  - Frequency
  - Dry vs wet toilets
  - "Wipers" vs "washers"
- ✓ Frequency and type of sludge collection (manual, pumping)
- ✓ Use of additives
- Trash and grey water disposal





# Types of FS

#### From different on-site sanitation sources:

- Pit latrines
- Unsewered public ablution blocks
- Septic tanks
- Aqua privies
- Dry toilets

Depending on the age, storage and source treatment:

Digested

• Wet

Dry

Partly digested

Fresh





## **FSM treatment targets and objectives**

- Main aim is safe public and environmental health including treatment, discharge, enduse or disposal.
- Treatment objectives
  - Dewatering
  - Pathogen inactivation
  - Stabilisation organic matter and nutrients
  - Safe end-use or disposal



#### Important parameters for FS characterisation

| Groups of properties   | Property / analytical test                          | Equipment / method                          | Reason/ importance                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical<br>properties | Moisture content<br>Total dry solids                | Oven 105 ºC                                 | <ul> <li>Assessment of the mechanical behaviour –<br/>mixing, drying, flowing, viscosity, combusting</li> <li>Migration of pathogens</li> <li>Biodegradation potential</li> </ul>                        |
|                        | Total volatile solids<br>Ash content (fixed solids) | Furnace - 550 °C                            | <ul> <li>Show the ratio of organic to inorganic solids that<br/>will change over time; combustion potential;<br/>biodegradability potential</li> </ul>                                                   |
|                        | Total suspended solids                              | Filter, dry                                 | <ul> <li>Pit emptying and processing – indicating<br/>potential settling, clogging</li> </ul>                                                                                                            |
|                        | COD total                                           | Closed reflux titrimetric method, microwave | <ul> <li>Indicate the organic content and the<br/>biodegradability rate of the sludge contents</li> </ul>                                                                                                |
|                        | рН                                                  | pH probe                                    | <ul> <li>pH affects the rate of degradation of the faecal sludge and the sanitising effects of ammonia.</li> <li>Indicates the corrosive effect on pit emptying and sludge treatment devices.</li> </ul> |
|                        | Ammonia                                             | Distillation                                | Nutrient recovery; disinfection                                                                                                                                                                          |
|                        | TKN (Total Kjeldahl Nitrogen)                       | Digestion and distillation                  | Nutrient recovery                                                                                                                                                                                        |
|                        | K (Potassium)                                       | Spectroquant Tests                          | Nutrient recovery                                                                                                                                                                                        |
|                        | Total phosphate                                     | Spectroquant Tests                          | Nutrient recovery                                                                                                                                                                                        |
|                        | Orthophosphate                                      |                                             |                                                                                                                                                                                                          |

#### Important parameters for FS characterisation

| Group of properties        | Property / analytical<br>test        | Equipment / method                                                          | Reason/ importance                                                                                           |
|----------------------------|--------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Physical and<br>mechanical | Density (solids, dry,<br>bulk)       | Mass balance & volume measurement<br>(liquid volume displacement by solids) | <ul> <li>Pit emptying equipment &amp; mechanical<br/>process design</li> </ul>                               |
|                            | Particle size<br>distribution (>5mm) | Wet sieving rig; Sieve shaker<br>Set of sieves for dry and wet sieving.     | <ul> <li>Pit emptying equipment &amp; mechanical<br/>process design</li> </ul>                               |
|                            | Particle size<br>distribution (<5mm) | Malvern particle size analyser                                              | <ul> <li>Pit emptying equipment &amp; mechanical<br/>process design</li> </ul>                               |
|                            | Sludge volume index<br>(SVI)         | 30 minute settling test                                                     | <ul> <li>To estimate settling characteristics of<br/>sludge; pit emptying and processing</li> </ul>          |
|                            | Osmotic pressure                     | Osmometer                                                                   | Vapour pressure, membrane processing                                                                         |
|                            | Rheological<br>properties            | Parr rheometer                                                              | <ul> <li>Design parameters for pit emptying<br/>equipment; extruders and mechanical<br/>treatment</li> </ul> |
|                            | Sludge penetration resistance        | Penetrometer – lab and field scale                                          | <ul> <li>Design parameters for pit emptying<br/>equipment; extruders and mechanical<br/>treatment</li> </ul> |





#### **Important parameters for FS characterisation**

| Group of properties      | Property /<br>analytical test       | Equipment / method              | Reason/ importance                                                                                                                |  |  |
|--------------------------|-------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Thermal<br>properties    | Thermal conductivity                | Thermal conductivity analyser   | <ul> <li>Drying, combusting, heating<br/>potential, thermal treatment design</li> </ul>                                           |  |  |
|                          | Specific heat                       |                                 |                                                                                                                                   |  |  |
|                          | Calorific value                     | Calorimeter                     | Combustion, heating potential                                                                                                     |  |  |
| Biological<br>properties | Parasites content<br>(e.g. Ascaris) | External laboratory, microscope | <ul> <li>Identify the potential biohazard;</li> <li>Identify the need of pre-treatment</li> <li>before potential reuse</li> </ul> |  |  |
|                          | Pathogens<br>(e.g. E. <i>coli</i> ) | Microscope, petri dish          | <ul> <li>Identify the potential biohazard;</li> <li>Identify the need of pre-treatment<br/>before potential reuse</li> </ul>      |  |  |





# **Challenges measuring FS properties**

FS properties vary between:

- >different types of on-site sanitation systems
- different toilets from one and the same type of on-site sanitation systems
- within one and the same toilet or sanitation system

# So what is the correct approach?





# **Development of standard methods and procedures (Standard Operating Procedures)**

Applicable for:

- ✓ Sampling
- ✓ Analysis
- Health and safety procedures during sampling, transportation, analysis and disposal





### **Importance of the SOPs**

Consistency and reliability
 > within a particular study
 > between different studies or regions
 ✓ Promotion of Best Practice

- ✓ Quality control
- ✓ Efficiency
- ✓ Fewer errors
- Healthy and safe work environment





# **Standard Operating Procedures for FS**

- Currently there are no standard methods for sampling and analysis of FS
- Standard methods for water, wastewater and soil are used for FS
- These methods are not the most suitable because FS differs in its characteristics
  - ≻in time
  - ≻by location
  - ≻by type of facility
- ✓ The lack of standard methods for FS results in incomparable data between different institutions





## The way forward

- Need for collaboration to combine the experience of different groups around the world to get a common acceptable set of appropriate FS SOPs
- This is not a once-off task methods are being developed and modified over time





# Development of FS SOPs Pollution Research Group Example





## **PRG expertise in FS SOPs**

#### Specialised sanitation laboratory





#### http://prg.ukzn.ac.za/laboratory-facilities





## **FS SOP** manual

- SOP manual for FS covering
  - ✓ Administration
  - ✓ Chemical properties
  - Physical and mechanical properties
  - ✓ Thermal properties
  - ✓ Biological properties parasites content
  - ✓ Laboratory health and safety

http://prg.ukzn.ac.za/visiting-researchers/information-forvisiting-researchers

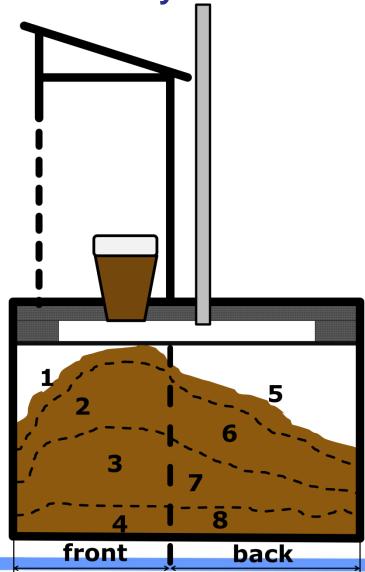


## **Properties of FS study**

✓ "Mechanical Properties of Faecal Sludge"

### ✓ Objectives

- Generate first hand data on faecal sludge characteristics from on-site dry sanitation facilities
- Provide data for improved design and sizing of pitemptying devices, transport and processing systems for sludge and the design of future on-site sanitation facilities

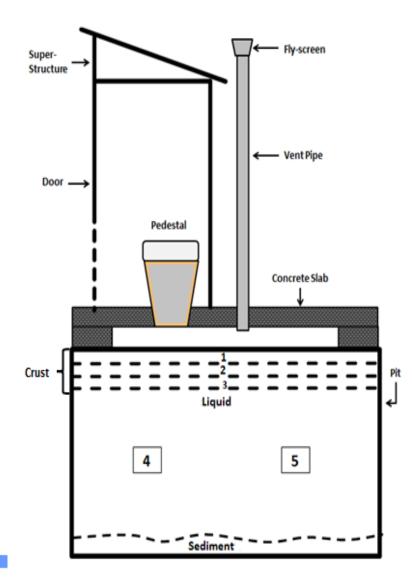





### Pit emptying programme

| Facility type                    | Characteristics | Usage level                     | Number of facilities sampled | Location in<br>Durban         |
|----------------------------------|-----------------|---------------------------------|------------------------------|-------------------------------|
| Household VIP latrine            | Dry             | Low use<br>(<5 users/facility)  | 5                            | Besters                       |
|                                  |                 | High use<br>(>5 users/facility) | 5                            |                               |
|                                  | Wet             | Low use                         | 5                            | Besters                       |
|                                  |                 | High use                        | 5                            |                               |
| Household UDDT toilet            |                 | Low use                         | 5                            | Mzinyathi                     |
|                                  |                 | High use                        | 5                            |                               |
| Household unimproved pit latrine | Dry             | Low to high use                 | 2                            | Ocean Drive                   |
| Community ablution block VIP     | Wet and dry     | High use                        | 9                            | Malacca Road                  |
| School VIP toilet block          | Wet and dry     | High use                        | 4                            | Mzinyathi                     |
| Total                            |                 |                                 | 45                           | Institute for Water Education |

# Selection of analytical samples at different depth levels – dry household VIP

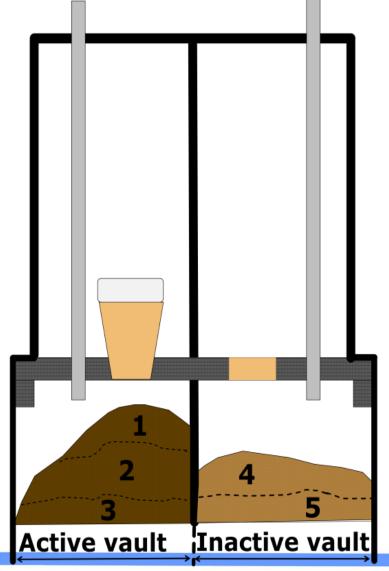







Institute for Water Education

# Selection of analytical samples at different depth levels – wet household VIP

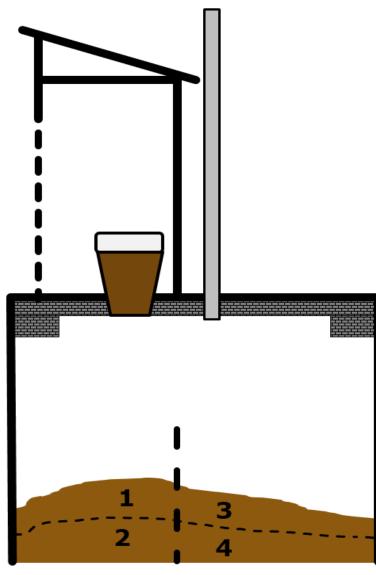







UNESCO-IHE Institute for Water Education

# Selection of analytical samples at different depth levels – household\_UDDTs

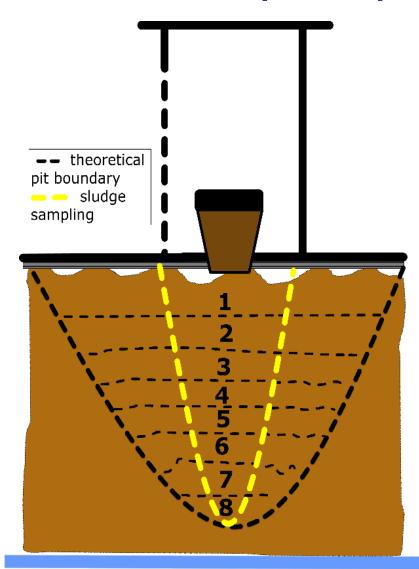









# Selection of analytical samples at different depth levels – School VIP








Institute for Water Education

# Selection of analytical samples at different depth levels – unimproved pits







# **FS** sampling methods

- ✓ Sampling should be based on the local FSM context
- ✓ It should fit the end use of the data
  - Different depths
  - Different sections
  - Composite sample
- Standardised methods for different types of on-site sanitation facilities
- The sampling timeline must be co-ordinated with laboratory analysis timeline – transportation, storage



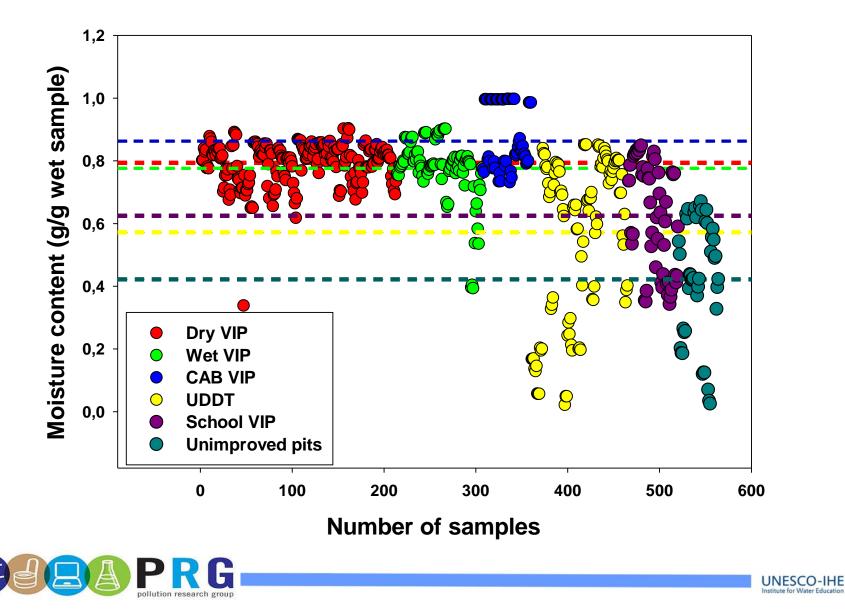


## Analyses on faecal sludge

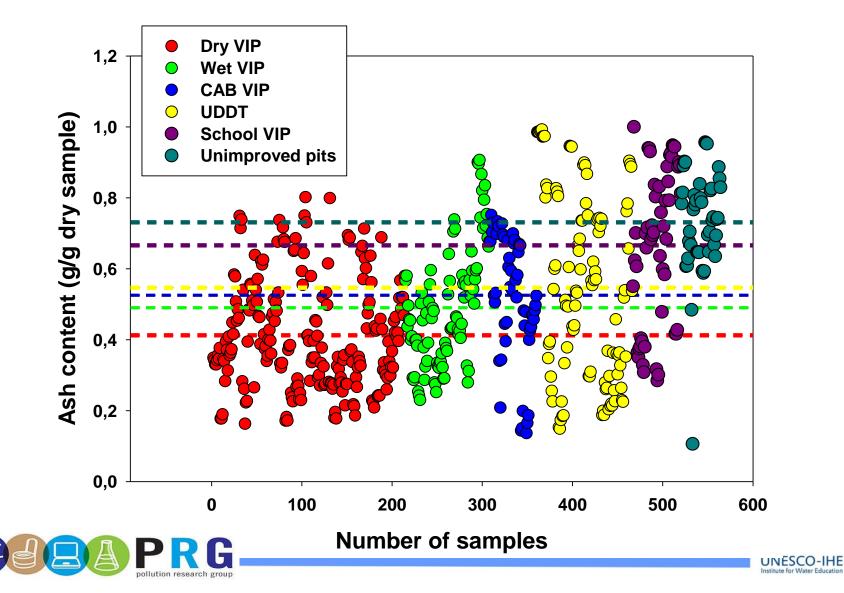
- Moisture content / Total solids
- Ash/ Volatile solids
- Suspended solids
- TKN
- Ammonia
- COD
- pHNitrates/Nitrites
- Potassium
- Orthophosphates /Total phosphates



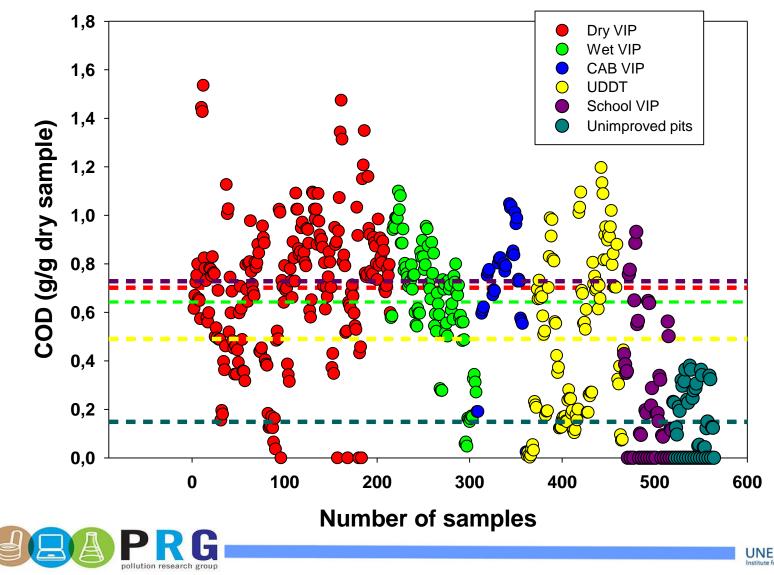



# Analyses on faecal sludge

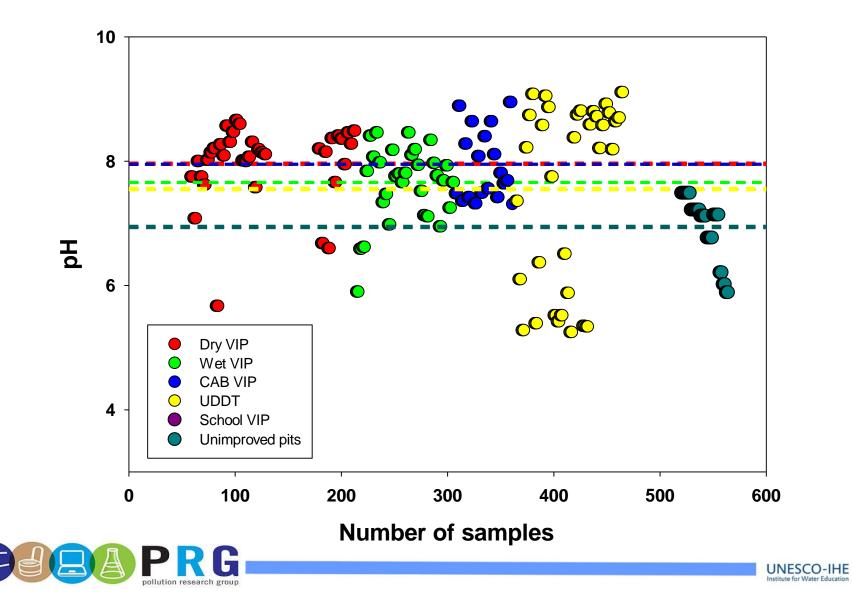
- Calorific value
- Specific heat
- Thermal conductivity
- Rheological properties (Viscosity)
- Plastic and liquid limits
- Density
- Sludge volume index
- Particle size distribution
- Ascaris / parasites content





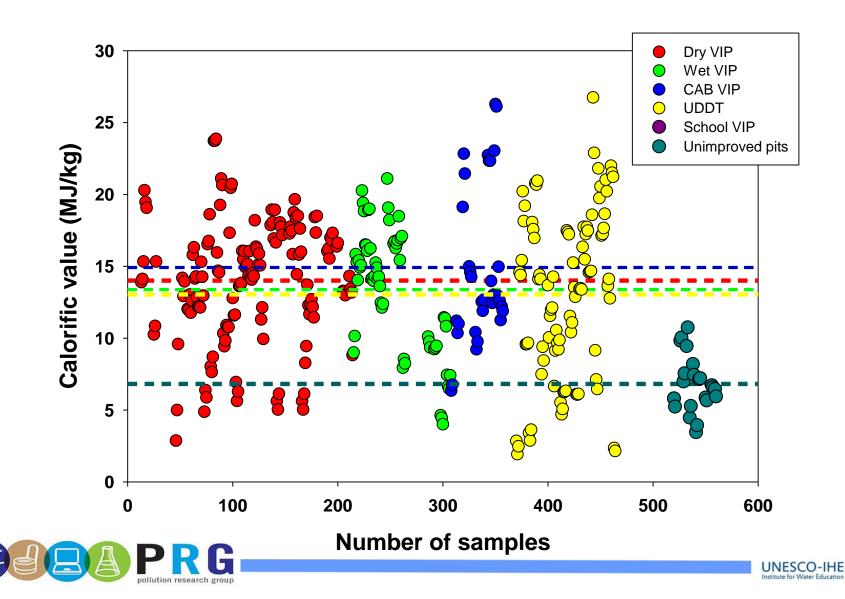


#### **Moisture content**




### Ash content



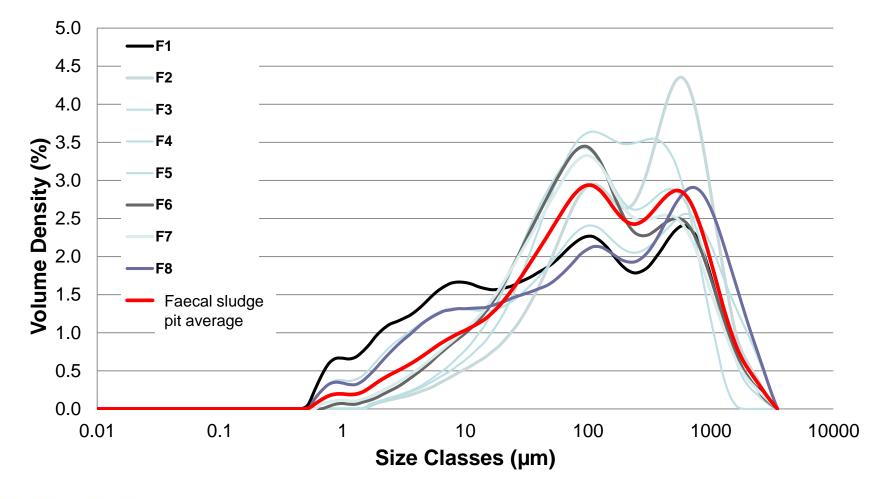
### **Total COD**




UNESCO-IHE Institute for Water Education рН




MAR


### **Calorific value**

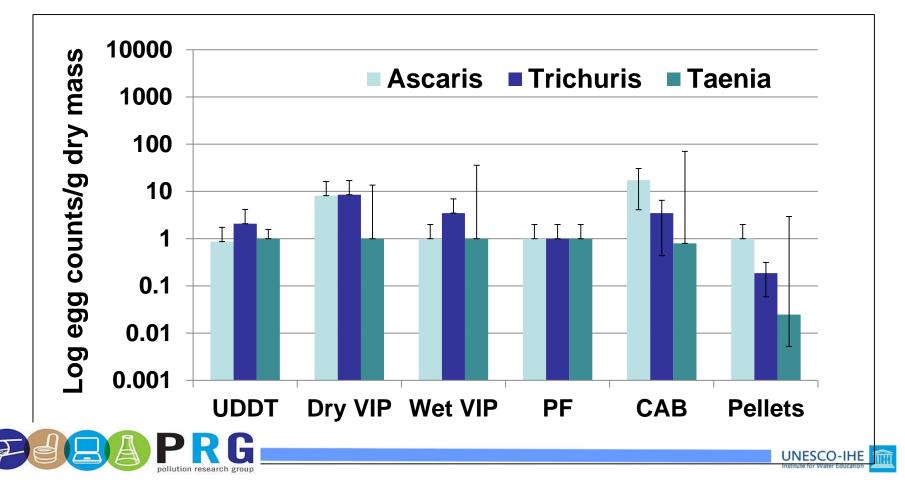


### **Rheological properties**

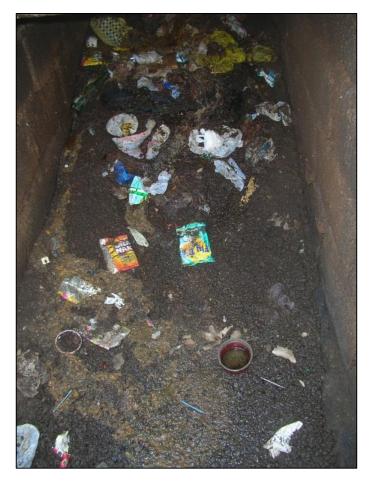


### **Particle size distribution**




**UNESCO-IHE** 




# **Helminth Eggs**

#### Occurrence of Helminth Eggs in On-site Sanitation Systems in eThekwini Municipality, South Africa

N. Rodda\*, C. Archer\*, V. Kelly\*, K. Velkushanova\*\* and C. Buckley\*\*



#### Trash content study in the FS









## **Trash separation and categorisation**









# **Trash separation and categorisation**













Hair / wig / braids



Plastic - soft



# Menstrual products UNESCO-IHE Institute for Water Education

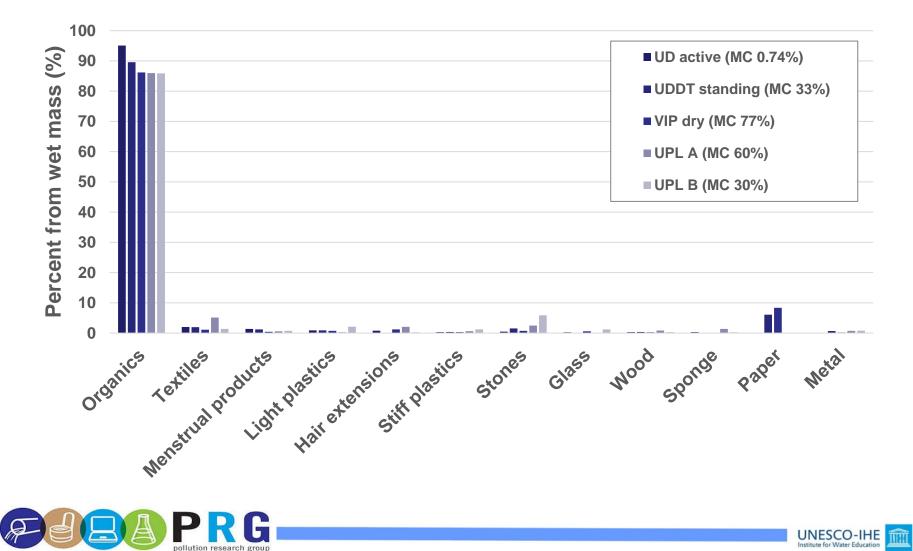




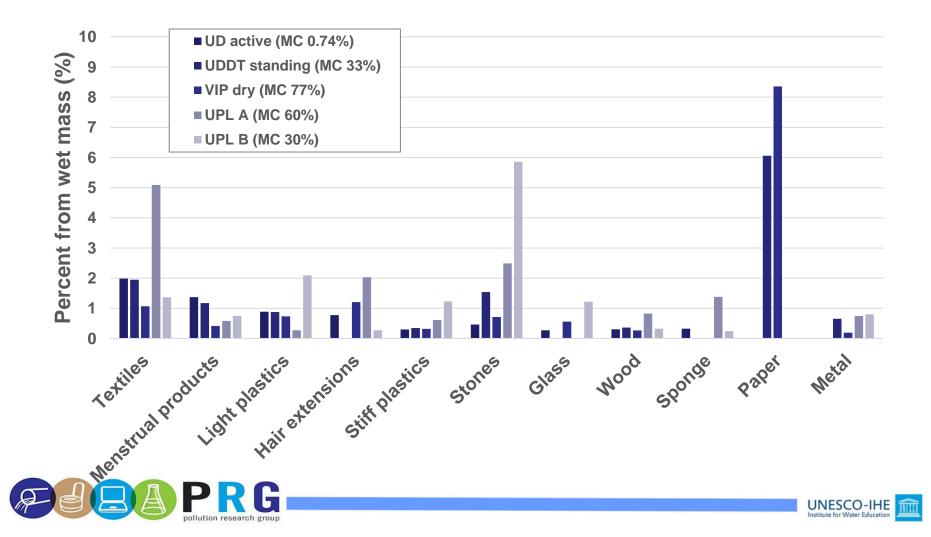


#### **Textiles**




#### **Plastics - rigid**




#### Glass



### Material categories in pits from different onsite sanitation facilities



### Material categories in pits from different onsite sanitation facilities



# **Conclusions of the study**

- From the material categorisation, the "organics" category was the most prevalent (85 to 95% by wet mass)
- For VIP samples from different facilities, the average moisture content was 75 to 85%
- The moisture content of UDDT samples was lower 61%
- The average ash content for VIPs was 0.35 to 0.55 g/g dry sample
- For standing vaults in UDDTs and aged samples from unimproved pit latrines, the ash content was higher – 0.58 to 0.66 g/g dry sample demonstrating FS stabilisation process
- The average COD was 0.60 to 0.90 gCOD/g dry sample for the most of the VIP samples
- For some UDDT and aged samples, the COD was much lower, 0.15 – 0.30 gCOD/g dry sample

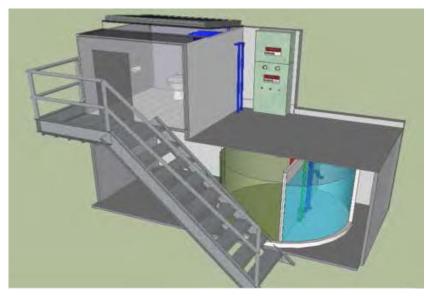


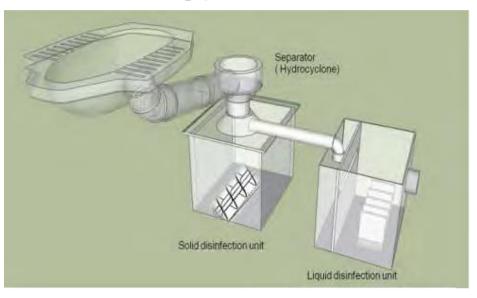
# **Conclusions of the study**

- The average calorific value was 11 to 15 MJ/kg for the most of the analysed sanitation facilities, except for the aged stabilised samples (5 MJ/kg).
- By rheological properties, the FS demonstrates shear thinning (viscosity reduction at increasing shear stress) expected to ease the pit emptying processes
- The sludge from all sanitation facilities showed higher helminth content than the limit of <1 helminth egg/g TS set by WHO (2006)






# **Outcomes of the study**


- Development of faecal sludge sampling methods and techniques
- Development of laboratory Standard Operational Procedures for analyses on faecal sludge
- Baseline for further similar studies by other organisations in other regions
- Dissemination of crucial support information required by partner organisations, pit emptiers and designers

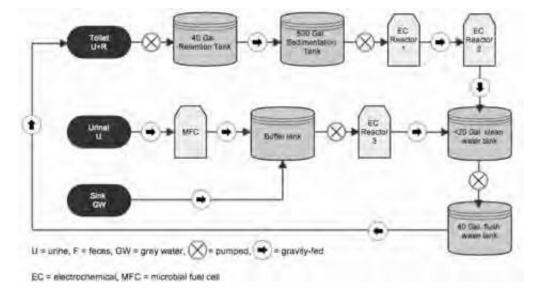




### **Asian Institute of Technology**



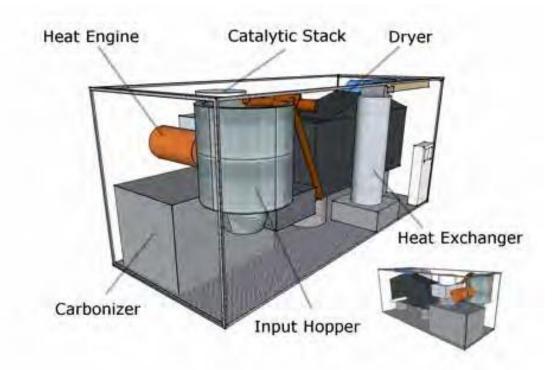



### Solar septic tank

### Hydrocyclone toilet



### **California Institute of Technology (Caltech)**








# **Climate Foundation**

# Conversion of human waste into biochar using pyrolysis at community scale facility





### **Cranfield University**

### **The Nano Membrane Toilet**







# **Delft University of Technology**

#### Sanir: Upgrading human waste with plasma-driven gasification







### **Duke University and the University of Missouri**

Neighborhood-Scale Treatment of Sewage Sludge by Supercritical Water Oxidation





#### Eawag (Swiss Federal Institute of Aquatic Science and Technology), Design by EOOS Blue Diversion toilet







### **FSOI Development Firms**

The Fecal Sludge Omni-Ingestor (FSOI)





## **Janicki Industries**

### **Omni-Processor**





# Loughborough University

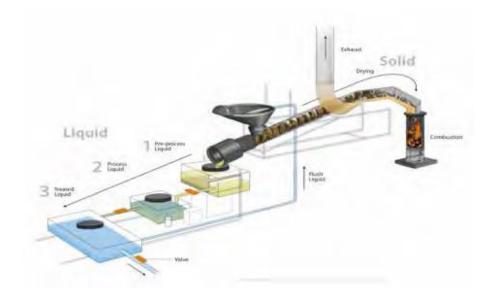
#### Reinventedtoilet@lboro





### **North Carolina State University**

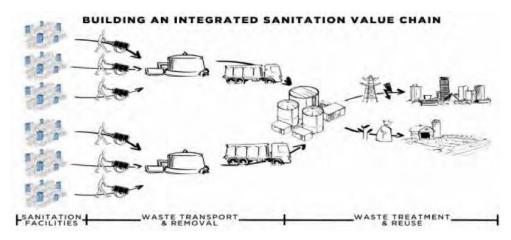
#### Hygienic Pit Emptying Using a Modified Auger – "The Excrevator"








## **RTI International**


### An integrated on-site waste treatment and toilet system.







# Sanergy









### **Information extracted from**





# Conclusions

- Good understanding of the FS characteristics is crucial for the improved design of emptying devices, transport and processing systems for FS
- FS characteristics are a baseline for the design of innovative technologies for FS collection, transportation and processing





# Conclusions

- Standard operating procedures for FS improve the data quality:
  - Consistency and reliability of the data
  - Comparability of results from different systems and regions
  - Systematic approach
  - Data base generation





# Thank you!



### http://prg.ukzn.ac.za

Velkushanova@ukzn.ac.za



